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A formulation and solution of the problem of steady seepage in a vertical column when the liquid enters from below are given. 
The boundary conditions on the free surface are linearized by the transposition method. Expressions are obtained for the dispersion 
surface and the components of the seepage rate and pressure. A numerical analysis of the solution is carried out. © 2002 Elsevier 
Science Ltd. All rights reserved. 

The problem considered is associated with the process of water separation which is used in the 
hydrotransport of suspensions. 

We note the following solutions of problems of seepage with a free surface: the solution of seepage 
problems with an unknown boundary by the method of the theory of functions of a complex variable 
for plane motions in homogeneous dams of comparatively simple configuration [1-3], the solution of 
the problem of the spreading of a heap of ground waters of arbitrary initial shape by linearizing the 
conditions on the depression surface [4], and the solution of the spatial problem of the spreading of a 
heap, in particular, in the shape of a parallelepiped [5]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The flow scheme and the system of coordinates are shown in Fig. 1. The origin of a cylindrical system 
of coordinates is placed at the centre of the cross-section, the r axis lies in a plane which passes through 
the beginning of the perforated segment of the water separation section and the z axis is directed vertically 
upwards. The c3"lindrical grid of the water separation section is shown by the dashed lines. 

The following assumptions are made. The liquid is viscous and incompressible. The flow is laminar 
and isothermal. The rate of ascent of the porous skeleton is homogeneous throughout the cross-section 
and equal to v_, that is, in essence a porous rod is considered. In particular, the skeleton can also be 
fixed. The permeability is homogeneous throughout the volume. An atmospheric pressure (p+) acts 
on the lateral seepage surface (of radius R). Evaporation and capillary effects on the free surface are 
ignored. 

In the cross-section z = 0 in a grid of thickness 8, there is a pressure drop of the liquid from the 
value at the input of the water separation section from P0 to p+. We will assume that there is a linear 
pressure distribution throughout the thickness of the grid. It is also assumed, without any substantial 
disturbance of the flow pattern, that the above-mentioned pressure drop occurs on a section of the porous 
skeleton which is immediately adjacent to the grid, as shown in Fig. 1. If it is assumed that there is a 
stepwise change in the pressure in the grid (r = R, z = 0, Or ---) oo), then the radial velocity will be infinite 
at the point z = 0, r = R, which contradicts the real flow pattern. An analysis showed that the flow field 
barely changes when 8/R is varied from 0.001 to 0.1. The hydraulic resistance of the grid in the seepage 
section was not taken into consideration. The effect of a grid on seepage was considered previously 
in [6]. 

Suppose the equation of the free surface is z = l - f ( r ) ,  where l is the maximum ascent of the liquid 
(the height of the steady heap) andf(r) is an unknown function (sup(f) ~ l), On the depression surface, 
the pressure in the liquid is equal to atmospheric pressure and, furthermore, the normal component 
of the velocity is equal to zero. 
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Fig. 1 

The components of the seepage rate are determined by the Darcy-Gersevanov equation [7] 

K ( b p  +pg]+v  
j _ ,  K bp (1.1) 

"q br 

In the case of this equation, the relations between the components of the seepage rate on the free 
surface 

af z = l - f ( r ) ,  Vz +Ur-~r =0 

can be written as 

OP + a* + df  bP A* _ qv__= 
a--~ d"-'r a---r = O, = Pg K 

where rl and P are the viscosity and density of the liquid and Kis the permeability of the porous skeleton. 
On substituting expressions (1.1) into the continuity equation, we obtain the Laplace equation for 

the pressure. Since the function p is sought to within an arbitrary constant, it is possible to put 
p + = 0 .  

We now introduce the dimensionless variables and parameters 

z r p f A*R l 8 
;=-R '  ~="R' P Po F=--~, A =  Po L=-~,  A=--R 

A*~R z K 
m = - -  

ql] 

where q is the liquid flow rate, and we write the problem in the dimensionless form 

I c3p O2p c32p 
---+~c3~ ~-'~"Y+O-~Y=0' 0 < ~ < I ,  O < ~ < L - F ( ~ )  (1.2) 

~=0:  p={I,  0~<~< I -A 
(1-~),x -~, I - A ~ < 1  

(1.3) 

V,=I: P=0 ;  ~=0:  P<,,~ (1.4) 

-•-• + A + 3F 3P 
o-T = o 

= L - F ( ~ ) :  P=0 ,  (1.5) 



The problem is an 
conditions. 
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= L, ~ = O: F = 0 (1.6) 

analogy of the Dirichlet problem but differs in the form of the boundary 

2. S O L U T I O N  OF THE P R O B L E M  

We will linearize the problem by transposing boundary conditions (1.5) from the surface 
- L -F(~)  to the horizontal plane ~ = L using a Taylor expansion of the function P and its derivatives 

in the neighbourhood of the point ~ = L. On substituting these expansions into boundary conditions 
(1.5), we obtain 

P(¢, c ) -  r OP(~' L_~_)) = o (2.1) 
a ;  

~P(~, • F ~2 p(~,  L) + A + dF  [//}P(~, L) F = 0 (2.2) L) a2p(~, L)]  

In this way, boundary conditions (1.5) are transposed from the surface ~ = L - F(~) to the plane 
= L and the function F is eliminated from the arguments of P. 
The solution of Laplace's equation (1.2), taking (1.3) and (1.4) into account, has the form 

P = ~ [3A ch(i.tk~ ) + BA sh(I.tA~)]j0(i.tt~), ak = 2q~k (2.3) 
A lafll(I-tk) 

I ]~[rq.(l - A)] rt k ~2]o(t~k~)d~ 
cPA = A  I - ( I - a ) 2  JI(BI) Jl(~k) I 

Henceforth, the summation over k and n is carried out from unity to infinity, and Pk, B, are the roots 
of the equation J0(/-t) = 0. 

Note the following properties of the coefficients %: q~k -> 1 when A --) 0, % < 1 when 0 < A < 1. 
We will now represent the function F and the constant A in relation (2.2) in the form of a Fourier- 

Bessel series 

F =  Y', aJo(I,  tA~), A = 2A Z J°(l'tA~) (2.4) 
A A PAJI(Pk) 

The last expansion results from the fact that there is no zero mode in (2.3). 
The unknown coefficients Bk in (2.3) and ak in (2.4) are found from conditions (2.1) and (2.2). On 

considering relations (2.1), (2.3) and (2.4) together, we obtain 

Y' (AAC k + BASk )Jo(HA~)- Y' a, Jo(~t,~)~ ~A(AASA + BkCA )Jo(~k~)= 0 
k n k 

(2.5) 

Ck = ch (I.tAL), S A = sh (bttcL) 

where a~ are the coefficients of the expansion of the function F in a Fourier-Bessel series. 
We multiply all the terms of Eq. (2.5) by ~fl~ and integrate within limits from ~ = 0 to ~ = 1. Taking 

account of the mutual orthogonality of the eigenfunctions J0(~tk~ ), we obtain the system of algebraic 
equations 

2 2 2(AAC~ + BkSA )JI (P-A) - a,P-,Jk (~) (AkSk  + BkCk ) = O, k = l, 2 . . . .  

whence we find 

2 
BA = AA SAl'tAakJI (HA) - 2CA 

2SA - CA~t~aAJ~ (HA) (2.6) 

Substituting expressions (2.3) and (2.4) into condition (2.2), we obtain 
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(AkSk + BkCk )12tJO(I.tk~)- ~;'~ anJo(~n~)Y~ (AkCk + BkSk )~kJo(I.tk~)+ 
k n k 

+ 2A~ Jo(~tk~)[~tkJ~ (lxk~)] -I + ~'. a n (-It n)J~ (I.t,~)]~ (akc k + BkS k )(-Ix~ )Jo(I.tk~) = 0 
k n k 

Multiplying all the terms of this expression by ~fl~ and integrating from ~ = 0 to ~ = 1, we arrive at 
the infinite system of equations 

(aks, +SkCk)~@,(~tk)+Za =0, t, = !,2 .... (2.7) 

From a consideration of relation (2.6) and (2.7) together we find 

2Sk ak k = !, 2 .... (2.8) 
ak Ckgt~Jt(~t,) a G  

Consequently, the function 

F(~)= 2 ~  AS k -I.t,~p, Jo(P-*~) (2.9) 
cw~Jl(~t, ) 

describes the shape of the depression surface. 
According to relation (2.9), the depression surface is horizontal at the top of the heap r = 0, since 

dF/d{ = 0 when ~ = 0. The configuration of the surface depends on the parameter A and the initial 
pressure distribution, which is characterized by the coefficients %. 

When account is taken of relations (2.6) and (2.8), the expression for the pressure (2.3) takes the 
form 

Jo(~tk~) 
P = 2Y., {~0k~t k ch[I.t k (L - 4)1 - A sh(lxk~) } C,t.t~j1 (I-tk) (2 .10)  

O ~ ; ~ t . - F ( ~ ) ,  o < ~ < 1  

Using expression (1.1), we find the components of the seepage rate. 
The liquid flow rate q and the height I to which it rises depend on the pressure at the inlet Po. We 

therefore find the relation between the parameters A, M and L. 
Since F(~ = 1) = 0, the height of the seepage surface is equal to I. Hence, the liquid flow rate can 

be defined by the integral 

! 

q = 2nRJ v r (r = R)dz 
0 

When account is taken of relations (1.2) and (2.10), after some reduction we obtain 

1 - C k ]-~ M=A 2~ A, th(t.t,L)Jl(gt,)+,A~ ~ j  (2.11) 

In order to obtain the second equation, we use boundary condition (1.6) for function (2.9) and find 
the following dependence of A on L 

A=~.,, C, la*Jl(gt,) C, lakzjl(~t, ). (2.t2) 

Hence, the dependence of the pressure at the inlet Po on the height of the heap l is described 
by expression (2.12) and, correspondingly, the dependence of q on l is described by expression 
(2.11). 
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3. RESULTS OF C A L C U L A T I O N S  

The lines of the free surfaces were constructed for different values of L for the case when A = 0.1. The 
coefficients q0k were calculated up to k = 100. The integral occurring in the expression for % was 
calculated using Simpson's formula (it can be represented in the form of a series but, when 
kt, 1> 10 (k 1> 3), the series has poor convergence). The parameter A (for a given value of L)  was 
calculated using formula (2.12). 

The relatives ~ = L -F(~) ,  calculated using formula (2.9), are represented by the solid curves in 
Fig. 2, and the same relations, calculated by numerical solution of the equation P(~, ~) = t0 -6 in which 
the quantity P was found using formula (2.10), are represented by the dashed curves. In the latter case, 
the profile of an isobar was determined for a pressure close to atmospheric pressure. In the 
neighbourhood of the wall (~ = 1), the free surface is significantly distorted, which is due to the Gibbs 
effect [9], which is characteristic for Fourier series. Increasing the number of terms in series (2.9) did 
not remove this distortion. In the domain ~ ~< 0.7, the isobars practically coincide with the calculated 
lines of the free surfaces, and no Gibbs effect is observed in the neighbourhood of the wall. As the 
height to which the liquid rises increases, the shape of the free surface is stabilized. 

We wish to thank V. M. Entov for his interest. 
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